
Hack The Bridge

whoami
● Anto Joseph
● Security Engineer @ Coinbase
● Speaker / Trainer @ Blackhat / Defcon / Nullcon / HITB/ HIP/ HackLu / PHdays / c0c0n….

Interested in distributed systems, machine learning , linux, radios and biotechnology

Disclaimer

● This is NOT financial advice
● This is NOT legal advice
● These are purely my opinions/ comments and in

no way reflect my employers
● This is purely meant for educational purposes!

Blockchains 101

At its most basic, a blockchain is a list of transactions that anyone can view and verify. The
Bitcoin blockchain, for example, contains a record of every time someone sent or
received bitcoin.

The Ethereum blockchain is a further evolution of the distributed ledger idea, Think of it
as a powerful and highly flexible computing platform that allows coders to easily build all
kinds of applications leveraging the blockchain.

Blockchains 101

Smart Contracts
A smart contracts are(sometimes immutable) code running on a blockchain like Ethereum, Solana , Cosmos etc. They

allow developers to build d(apps) that take advantage of blockchain security, reliability, and accessibility while offering

sophisticated peer-to-peer functionality — everything from exchanges, loans and insurance to logistics and gaming.

What do they look like?

Popular smart contract
programming languages

● Solidity
● Rust
● Go

Allows users to transfer value from one
chain to the other. if you have ether but

want to use it on solana, you can do that
through a bridge.

Why bridge?

● Reducing transaction fees
● speeding up transactions
● Utilizing dapps on different networks
● Better trade execution with larger liquidity pools
● NFT’s launching on different blockchains
● Better UX (think wallets / rpc nodes / even uptime)

The future of bridges

Cross chain bridges

● Bridge across different kind of blockchains
like ethereum to solana

○ Wormhole, Nomad

Multi Chain bridges

● Moving assets from l1 to l2 and back
○ (bridging from ethereum to optimism /

arbitrum etc)
● Optimism and Arbitrum are layer 2 scaling

solutions on ethereum using optimistic
rollup technology

● Cosmos IBC
● Polkadot

What’s better? An opinion

Wait, whaaat?
A 51% attack (or majority attack)

refers to a potential attack on the integrity of a pow blockchain system in which a single entity controls
more than half of the total hashing power of the network, potentially causing double spends / censorship
etc

A Reorganization attack

refers to nodes receiving blocks from a new chain while the old chain continues to exist. In this case, the
chain would be split and create a fork, or a duplicate version of the blockchain

The Longest Chain Rule

This rule kick in when forks appear. Each fork will have its own chain and miners can pick which one to
apply their work on. But eventually the longer of the chains will be declared the winner – and all miners will
apply their work onto that chain.

Scenario 1

Imagine this

● Bridge 100 ETH from ethereum to solana
● Swap eth on solana , let’s call it sETH to USDC
● Ethereum goes through a reorg and the bridge transaction is no longer part of the canonical chain
● Now you have 100 ETH on ethereum and $150,000 USDC on solana (assuming 1ETH = $1500

USDC)

Cross chain bridges try to mitigate this by waiting for multiple block confirmations before they credit the
deposit on the destination chain.

Block confirmations : number of blocks that were build on the block in question , as more blocks are build (
more pow accumulated) , it becomes harder to reorg the chain. POW chains have probabilistic finality
unlike certain POS chains.

Let’s look into cross chain bridges ,
they seem to have topped the
leaderboard

Rekt.news maintains a leaderboard of protocols
including bridges that were rekt.

 5 cross chain bridges made it to the top 11 category, (
there is more in this leaderboard, it’s clipped for
readability)

Visit the leaderboard at https://rekt.news

How do bridges work?

Since blockchain assets are often not compatible with one another, bridges create
synthetic derivatives that represent an asset from another blockchain.

They have either a trusted or varying degrees of decentralised message passing
techniques

Examples of trusted bridges include wbtc (custodied by bitGo) or bridging using
crypto exchanges.

Simplified message passing bridge

Where them bugs at?

● Key management & cryptography
○ Issues with custody / implementation / operation of signing tx’s

■ Private key / Multisig key compromise
● Axie infinity Ronin bridge
● Harmony bridge

■ MPC keyshares compromise / cryptography bugs
● Fire blocks MPC bug

■ Upgrade keys for smart contracts
■ Bugs in proof systems

● Fraud/ fault proofs used by optimistic rollups
● zkP’s used by zeroKnowledge rollups

Off Chain systems
● The relayer

○ Watches events on source chain and initiates a transaction on destination chain
○ Fake events or the compromise of these systems can lead to a loss
○ For some bridges, this is a group of nodes that validate the tx and reach consensus before

relaying the tx to the target chain , often called guardians
● The validator

○ Validates signatures / blocks for cryptographic correctness
○ Merkel trees are commonly used to prove inclusion
○ Signature replay / verification bugs affect these systems

● The watcher
○ They can pause the bridge if they detect fraud in optimistic bridge designs
○ They have Permissioned watchers to prevent griefing attacks
○ Do not confuse optimistic bridges with Optimistic roll ups as the latter allows anyone to post a

fraud proof , this is more inclusive than the above approach

Smart Contracts bridge contracts

● Operational issues with smart contracts
○ Uninitialized proxy contracts
○ Wormhole bridge exploit

● Mint without deposit
○ tokenAddress.safeTransferFrom() doesn’t revert for EOA’s
○ Qubit finance hack

● Toxic privilege combination
○ Allowing user calls to be relayed via privileged contracts, thereby giving these actions admin privileges
○ Poly chain hack

● Lack of input validation
○ Using address returned by an Attacker supplied input for token swaps
○ Multichain hack

● Logic bugs in smart contract
○ Nomad bridge hack
○ We will explore this one in detail

Case Study
Multichain
(anyswap)

 Bridge

MultiChain bridge
Multichain allows users to swap between supported
chains. To do so, the router wraps the actual token with
its “anyToken”. For example, the DAI token is wrapped
as anyDAI. The wrapped token is used for internal
accounting and when user “transfers” DAI from
Ethereum to BSC, actually anyDAI is added on
Multichain’s anyDAI BSC contract and burned on anyDAI
Ethereum contract.

Erc-20 permit

Implementation of the ERC20 Permit extension allowing approvals to be made via
signatures, as defined in EIP-2612.

Adds the permit method, which can be used to change an account’s ERC20
allowance by presenting a message signed by the account. By not relying on
IERC20.approve, the token holder account doesn’t need to send a transaction,
and thus is not required to hold Ether at all.

The Bug

Attacker controls the token parameter which is inturn used by the bridge contract to identify the underlying token. A
malicious contract returns `weth` which doesn't have a permit function. Solidity calls the fallback function when the function
that’s called on the contract can’t be triggered and as such , this successfully returns without errors. The last step of the
exploit abuses unlimited token approvals by the dapp to drain funds from victim to attackers contract

Why did the exploit work?
Do not trust user input without validation

Callers should not rely on permit reverting for arbitrary tokens.The call
token.permit(...) never reverts for tokens that

● do not implement permit
● have a (non-reverting) fallback function.

Unlimited token approvals

● Smart contracts could get hacked and the approvals for this smart
contract can be abused to drain funds from wallets that have approved
this contract already

Demo time

Case Study
Nomad Bridge

Nomad Bridge Components

● Replica contract
○ Validates and stores messages

● BridgeRouters
○ Enables users to “send” tokens from Chain A to Chain B via a

lock-and-mint mechanism.
■ NomadBridgeRouter Contract

● Sender Bridge
■ ERC20 Router Contract

● Receiver Bridge
● Off-Chain systems

○ Used for Message Passing between chains
○ Watcher nodes to report fraud

The setup

● confirmAt map sets _committedRoot
to 1

● _committedRoot is set to 0 during
initialization

The Bug

Replica contract was upgraded recently

The Diff

Verified messages can be submitted to the process() method.
● process() method internally calls acceptableRoot()
● “when called with an item that doesn't exist in a map , the map returns 0”

● acceptableRoot() references the confirmAt map
● require(acceptableRoot(messages[_messageHash]),!proven);

○ => require(acceptableRoot(0),"!proven");
○ => confirmAt[0] = 1

The Exploit

● Easy way
○ Copy hack txn , search and replace recipient addr
○ https://etherscan.io/tx/0xa5fe9d044e4f3e5aa5bc4c07

09333cd2190cba0f4e7f16bcf73f49f83e4a5460

● Exploitorr way
○ Craft token transfer request struct yourself

Demo time

For developers

● Smart Contract Security Verification Standard
● Use safe audited libraries (OpenZepplin)
● Get audits, even better if you have a product security team
● Minor updates to a smart contracts can wreak havoc
● Write tests , invariant testing is especially useful
● Fuzz your contracts (use foundry , echidna)
● Have a meaningful bug bounty program
● Have a monitoring program, they might help
● Test your projects end to end including deployment/ initialisation

For whitehats

● Bridges are an attractive target because they custody lots of assets
● Most protocols including bridges have great bug bounty programs
● They are important in growing the crypto ecosystem, why not hack on

systems where you can clearly demonstrate impact and get paid for it (
generously , something upto 10% of the value secured) while securing the
future of money for the masses ?

● Tools that may help you in the process
○ Foundry
○ Tenderly debugger
○ Echidna/ Certora
○ Learning resources: immunify write ups , BlockThreat Newsletter
○ CTF : capture the ether, crypto zombies , ethernaught , paradigm ctf

Questions?

Tweet @ pwnfooo
Telegram @ blocksek

References

● https://docs.nomad.xyz/the-nomad-protocol/cross-chain-messaging/lifecycle-of-a-message
● https://rekt.news/
● https://blog.coinbase.com/nomad-bridge-incident-analysis-899b425b0f34?gi=3d3d942484d8
● https://blog.coinbase.com/what-are-bridges-bridge-basics-facts-and-stats-8dd9449066a0
● https://medium.com/zengo/without-permit-multichains-exploit-explained-8417e8c1639b
● https://media.dedaub.com/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49
● https://docs.multichain.org/getting-started/how-it-works/cross-chain-router
● https://github.com/SunWeb3Sec/
● https://gist.github.com/yoavw/160d5dadb37fbd0d1ec04e69951edafd
● https://gist.github.com/yajin/0f1a7acfd54adce02422298a1dea8d89
● https://docs.openzeppelin.com/contracts/4.x/api/token/ERC20
● https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/
● https://www.fireblocks.com/blog/vulnerabilities-discovered-and-patched-in-legacy-mpc-algorith

m-fireblocks-urges-move-to-mpc-cmp/

Thank you
Nullcon for

organising a
fantastic event

