p

Hack The Bridge

whoami

e Anto Joseph
e Security Engineer @ Coinbase
e Speaker/ Trainer @ Blackhat / Defcon / Nullcon / HITB/ HIP/ HackLu / PHdays / cOcOn....

Interested in distributed systems, machine learning , linux, radios and biotechnology

Disclaimer

e Thisis NOT financial advice

This is NOT legal advice

e These are purely my opinions/ comments and in
no way reflect my employers

e This is purely meant for educational purposes!

Blockchains 101

At its most basic, a blockchain is a list of transactions that anyone can view and verify. The

Bitcoin blockchain, for example, contains a record of every time someone sent or
received bitcoin.

The Ethereum blockchain is a further evolution of the distributed ledger idea, Think of it

as a powerful and highly flexible computing platform that allows coders to easily build all
kinds of applications leveraging the blockchain.

Blockchains 101

Block 12

Prev_Hash Timestamp

Block 10 Block 11

Prev_Hash Timestamp Timestamp

Tx_Root Nonce Tx_Root
A K

Hash01 Hash23

Tx_Root Nonce

Smart Contracts

A smart contracts are(sometimes immutable) code running on a blockchain like Ethereum, Solana, Cosmos etc. They
allow developers to build d(apps) that take advantage of blockchain security, reliability, and accessibility while offering

sophisticated peer-to-peer functionality — everything from exchanges, loans and insurance to logistics and gaming.

What do they look like?

pragma solidity "@.4.24;

import "./IERC20.s0l";
import "../../math/SafeMath.sol";

@title Standard ERC20 token

*
*

* @dev Implementation of the basic standard token.
* https://github.com/ethereum/EIPs/blob/master/EIPS
* Originally based on code by FirstBlood: https://c
*/

contract ERC20 is IERC2@ {

using SafeMath for uint256;

mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256))
uint256 private _totalSupply;

/x%

* @dev Total number of tokens in existence

*/

function totalSupply() public view returns (uint2f
return _totalSupply;

/¥%
* @dev Gets the balance of the specified address.
% @param owner The address to query the balance of
* @return An uint256 representing the amount ownec
*/
function balanceOf(address owner) public view retc

return _balanceslowner];

/H%
* @dev Function to check the amount of tokens the
* @param owner address The address which owns the

* @param spender address The address which will s

NP

w

15
16
17

NN
N P o

N

N
w

)
o

N
o

N
~

~
=

Instruction types

use crate::{check_program_account, error::Tok
use solana_program::{

instruction::{AccountMeta, Instruction},
program_error: :ProgramError
program_option::COption,
pubkey: :Pubkey,
sysvar,

i
use std::convert::Trylnto;
use std::mem::size_of;

/// Minimum number of multisignature signers
pub const MIN_SIGNERS: usize = 1;

/// Maximum number of multisignature signers
pub const MAX_SIGNERS: usize = 11;

/// Serialized length of a ué4, for unpacking
const U64_BYTES: usize = 8;

/// Instructions supported by the token progr
#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
pub enum TokenInstruction<'a> {
/// Initializes a new mint and optionally
/// tokens in an account.
/11
/// The “InitializeMint® instruction requ
/// included within the same Transaction
/// ‘CreateAccount’ instruction that crea
/// Otherwise another party can acquire o
/// account.
/11
/// Accounts expected by this instruction
/11
/// 0. ‘[writable]l® The mint to initial

package types

import (
"encoding/json"
"fmt"
"regexp"
"sort"
"strings"

)

i

// Coin

// NewCoin returns a new coin with a denomination
// the amount is negative or if the denomination i
func NewCoin(denom string, amount Int) Coin {
coin := Coin{
Denom: denom,
Amount: amount,

%

if err := coin.Validate(); err != nil {
panic(err)

I

return coin

// NewInt64Coin returns a new coin with a denomina
// if the amount is negative.
func NewInté4Coin(denom string, amount inté4) Coin

return NewCoin(denom, NewInt(amount))

// String provides a human-readable representation
func (coin Coin) String() string {
return fmt.Sprintf("%v%s", coin.Amount, co

// Validate returns an error if the Coin has a neg
// the denom is invalid.

Popular smart contract
programming languages

Solidity
Rust
Go

Allows users to transfer value from one
chain to the other. if you have ether but

want to use it on solana, you can do that
through a bridge.

‘{ Ethereum Mainnet Network Other

Minting of

a wrapped ETH

.quln (10t T |
Sends 100 ETH to v) | | |) | Sends 100
Bridge ‘{ { _]] - Wrapped ETH to

Alice S Alice Alice
Ethereum side Network Other

of bridge side of bridge

Why bridge?

Reducing transaction fees

speeding up transactions

Utilizing dapps on different networks

Better trade execution with larger liquidity pools
NFT’s launching on different blockchains

Better UX (think wallets / rpc nodes / even uptime)

The future of bridges

Cross chain bridges Multi Chain bridges
e Bridge across different kind of blockchains e Moving assets from |1 to 12 and back
like ethereum to solana o (bridging from ethereum to optimism /
o Wormhole, Nomad arbitrum etc)

e Optimism and Arbitrum are layer 2 scaling
solutions on ethereum using optimistic
rollup technology

e Cosmos IBC

e Polkadot

What's better? An opinion

V|taI|k eth@

talikButerin

My argument for why the future will be *multi-chain®, but it
will not be *cross-chain*: there are fundamental limits to

the security of bridges that hop across multiple "zones of
sovereignty". From old.reddit.com/r/ethereum/com.:

r to hold Ethereum-native assets on Ethereum or Solana-native
ptimist Solana or Solana-native assets on Ethereum. Anc C
er for them to live sep atis built on it. If Ethereum

/arious combinations of b

he mentality that "if a blockchain gets 51% attacked, everythi
b attack from ever happening even once". | really disag

Wait, whaaat?

A 51% attack (or majority attack)

refers to a potential attack on the integrity of a pow blockchain system in which a single entity controls
more than half of the total hashing power of the network, potentially causing double spends / censorship
etc

A Reorganization attack

refers to nodes receiving blocks from a new chain while the old chain continues to exist. In this case, the
chain would be split and create a fork, or a duplicate version of the blockchain

The Longest Chain Rule
This rule kick in when forks appear. Each fork will have its own chain and miners can pick which one to

apply their work on. But eventually the longer of the chains will be declared the winner — and all miners will
apply their work onto that chain.

Scenario 1

Imagine this

Bridge 100 ETH from ethereum to solana

Swap eth on solana , let’s call it sETH to USDC

Ethereum goes through a reorg and the bridge transaction is no longer part of the canonical chain
Now you have 100 ETH on ethereum and $150,000 USDC on solana (assuming 1ETH = $1500
USDC)

Cross chain bridges try to mitigate this by waiting for multiple block confirmations before they credit the
deposit on the destination chain.

Block confirmations : number of blocks that were build on the block in question , as more blocks are build (
more pow accumulated) , it becomes harder to reorg the chain. POW chains have probabilistic finality
unlike certain POS chains.

Let’s look into cross chain bridges ,
they seem to have topped the
leaderboard

|

g l’ekt event | merch | feed | leaderboard | dark | eny

Ronin Network - REKT

e Rekt.news maintains a leaderboard of protocols
$624,000,000 | 03/23/2022 including bridges that were rekt.

Poly Network - REKT
Unaudited

SETL.BEE,E08 | Barve/zE 5 cross chain bridges made it to the top 11 category, (
Wormhole - REKT

Neodyme there is more in this leaderboard, it’s clipped for
$326,000,000 | 02/62/20622 readablhty)

BitMart - REKT
N/A
$196,000,000 | 12/04/2021

Nomad Bridge - REKT

N/A Visit the leaderboard at https://rekt.news

$190, 000,000 | ©8/01/2022

Beanstalk - REKT
Unaudited
$181,000,000 | ©4/17/2022

Compound - REKT
Unaudited
$147,000,000 | ©09/29/2021

Vulcan Forged - REKT
Unaudited
$140,000,000 | 12/13/2021

Cream Finance - REKT 2
Unaudited
$130,000,000 | 10/27/2021

Badger - REKT
Unaudited
$120,000,000 | 12/62/20621

Harmony Bridge - REKT
N/A
$100,000,000 | 06/23/2022

How do bridges work?

Since blockchain assets are often not compatible with one another, bridges create
synthetic derivatives that represent an asset from another blockchain.

They have either a trusted or varying degrees of decentralised message passing
techniques

Examples of trusted bridges include wbtc (custodied by bitGo) or bridging using
crypto exchanges.

Dispatch Tx — Process Tx

T

Message Sent Forward
to Dapp (¢4
l T \
Commit 5 See Message Received
Message Message by Dapp
Origin Off-chain Actors Destination

Simplified message passing bridge

Where them bugs at?

e Key management & cryptography
o Issues with custody / implementation / operation of signing tx’s

m Private key / Multisig key compromise
e Axie infinity Ronin bridge
e Harmony bridge

m MPC keyshares compromise / cryptography bugs
e Fire blocks MPC bug

m Upgrade keys for smart contracts

m Bugs in proof systems
e Fraud/ fault proofs used by optimistic rollups
e zkP’s used by zeroKnowledge rollups

Off Chain systems

e The relayer
o Watches events on source chain and initiates a transaction on destination chain
o Fake events or the compromise of these systems can lead to a loss
o For some bridges, this is a group of nodes that validate the tx and reach consensus before
relaying the tx to the target chain , often called guardians

e The validator
o Validates signatures / blocks for cryptographic correctness
o Merkel trees are commonly used to prove inclusion
o Signature replay / verification bugs affect these systems

e The watcher
o They can pause the bridge if they detect fraud in optimistic bridge designs
o They have Permissioned watchers to prevent griefing attacks
o Do not confuse optimistic bridges with Optimistic roll ups as the latter allows anyone to post a
fraud proof , this is more inclusive than the above approach

Smart Contracts bridge contracts

e Operational issues with smart contracts
o Uninitialized proxy contracts
o Wormhole bridge exploit
e Mint without deposit
o tokenAddress.safeTransferFrom() doesn’t revert for EOA’'s
o Qubit finance hack
e Toxic privilege combination
o Allowing user calls to be relayed via privileged contracts, thereby giving these actions admin privileges
o Poly chain hack
e Lack of input validation
@ Using address returned by an Attacker supplied input for token swaps
o Multichain hack
e Logic bugs in smart contract
o Nomad bridge hack
o We will explore this one in detail

Case Study

Multichain
(anyswap)
Bridge

MultiChain bridge -

Xyz

Multichain allows users to swap between supported Xyz Xyz
chains. To do so, the router wraps the actual token with
its “anyToken”. For example, the DAI token is wrapped chdinia
as anyDAI. The wrapped token is used for internal
accounting and when user “transfers” DAl from
Ethereum to BSC, actually anyDAI is added on
Multichain’s anyDAI BSC contract and burned on anyDAI
Ethereum contract.

Chain D Chain B

Chain C

Erc-20 permit

Implementation of the ERC20 Permit extension allowing approvals to be made via
signatures, as defined in EIP-2612.

Adds the permit method, which can be used to change an account’s ERC20
allowance by presenting a message signed by the account. By not relying on
IERC20.approve, the token holder account doesn’t need to send a transaction,
and thus is not required to hold Ether at all.

The Bug

Attacker controls the token parameter which is inturn used by the bridge contract to identify the underlying token. A
malicious contract returns "'weth” which doesn't have a permit function. Solidity calls the fallback function when the function
that’s called on the contract can’t be triggered and as such , this successfully returns without errors. The last step of the
exploit abuses unlimited token approvals by the dapp to drain funds from victim to attackers contract

function deposit() external returns (uint) {
uint _amount = IERC20(underlying).balanceOf(msg.sender);
IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);
return _deposit(_amount, msg.sender);

}

function depositWithPermit(address target, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s, address to) external returns (uint) {
IERC20(underlying).permit(target, address(this), value, deadline, v, r, s);
IERC20(underlying).safeTransferFrom(target, address(this), value);
return _deposit(value, to);

Why did the exploit work?

Do not trust user input without validation

Callers should not rely on permit reverting for arbitrary tokens.The call
token.permit(...) never reverts for tokens that

e do not implement permit
e have a (non-reverting) fallback function.

Unlimited token approvals
e Smart contracts could get hacked and the approvals for this smart

contract can be abused to drain funds from wallets that have approved
this contract already

approve(address spender, uint256 amount) - bool

Sets amount as the allowance of spender over the caller’s tokens.

Returns a boolean value indicating whether the operation succeeded.

external #

Demo time

Case Study

Nomad Bridge

Nomad Bridge Components

e Replica contract
o Validates and stores messages

e BridgeRouters
o Enables users to “send” tokens from Chain A to Chain B via a
lock-and-mint mechanism.
m NomadBridgeRouter Contract
e Sender Bridge
m ERC20 Router Contract
e Receiver Bridge
e Off-Chain systems
o Used for Message Passing between chains
o Watcher nodes to report fraud

The setup

function initialize(

uint32 _remoteDomain,

address _updater,

bytes32 _committedRoot,

uint256 _optimisticSeconds e confirmAt map sets _committedRoot
) public initializer { to 1

__NomadBase_initialize(_updater); . . .

// set storage variables e committedRoot is set to 0 during

entered = 1; initialization

remoteDomain = _remoteDomain;

committedRoot = _committedRoot;

// pre-approve the committed root.

confirmAt[_committedRoot] = 1;

_setOptimisticTimeout(_optimisticSeconds);

anto. joseph@C@2DT5GIMDET nomad % cast run 0x99662dacfb4b963479b159fc43c2b4dd48562104fel54a4d0c2519ada72e50bf --quick --rpc-url https://eth-mainn
et.g.alchemy.com/v2/00uQ_IbAT2FbrXN8J1dRECa6EKNE1DIK
Traces:

[261514] » new <Unknown>@"@x5d94..aeba"
— [2160] v fal (O [staticcall]

o @x@@@@@@@@@@@@@@@@0@@00@@07F58bb8311db9680b110889f2dfa®4ab7e8e831b

— [163890] : (1635148152, 0x00
000000000000000000, 1800) [delegatecall]
emit OwnershipTransferred(paramd: 0x00, paraml: OxaSbd5c661f373256c@ccfbc628fd52de74f9bb55)
emit NewUpdater(: @xb93d4dbb87b80f0869a5ce@839fb75acdbeblb77, : ©@xb93d4dbb87b80f0869a5ce@839fb75acdbeblb?77)
emit SetOptimisticTimeout(: 1800)

O
'— « 439 bytes of code

Gas used: 336650

The Bug

Replica contract was upgraded recently

The Diff

/I ensure message was meant for this domain // ensure message was meant for this domain

bytes29 _m = _message.ref(0);

require(_m.destination() == localDomain, "!destination"); require(_m.destination() == localDomain, "!destination");
/l ensure message has been proven // ensure message has been proven

bytes32 _messageHash = _m.keccak(); bytes32 _messageHash = _m.keccak();

5 require(acceptableRoot(messages[_messageHash]), "lproven"); require(messages[_messageHash] == MessageStatus.Proven, "lproven");

/I check re-entrancy guard /l check re-entrancy guard
require(entered == 1, "Ireentrant"); 05 require(entered == 1, "lreentrant");

entered = 0; entered = 0;

/I update message status as processed // update message status as processed

Verified messages can be submitted to the process() method.

e process() method internally calls acceptableRoot()

179 ~ function process(bytes memory _message) public returns (bool _success) {
180 // ensure message was meant for this domain

181 bytes29 _m = _message.ref(0);

182 require(_m.destination() == localDomain, "'!destination");
183 // ensure message has been proven

184 bytes32 _messageHash = _m.keccak();

185 | require(acceptableRoot(messages[_messageHash]), "!proven");
186 // check re-entrancy guard

187 require(entered == 1, "!reentrant");

188 entered = 0;

189 // update message status as processed

190 messages[_messageHash] = LEGACY_STATUS_PROCESSED;

191 // call handle function

192 IMessageRecipient(_m.recipientAddress()).handle(

193 _m.origin(Q),

194 _m.nonce(),

195 _m.sender(),

196 _m.body().clone()

197)b

e acceptableRoot() references the confirmAt map
e require(acceptableRoot(messages[messageHash]),!proven);
o =>require(acceptableRoot(0),"!proven");

o => confirmAt[0] = 1

255 ~ function acceptableRoot(bytes32 _root) public view returns (bool) {
256 // this 1s backwards-compatibility for messages proven/processed
257 // under previous versions

258 if (_root == LEGACY_STATUS_PROVEN) return true;

259 if (_root == LEGACY_STATUS_PROCESSED) return false;

260

261 uint256 _time = confirmAt[_root];

262 ~ 1f (_time == 0) {

263 return false;

264 }

265 return block.timestamp >= _time;

266 }

267

The Exploit

e [asy way
o Copy hack txn, search and replace recipient addr
o https://etherscan.io/tx/0xa5te9d044e4f3e5aasbc4cO/
09333cd2190chba0f4e/116bct/3f49183e4a5460

e Exploitorr way
o Craft token transfer request struct yourself

®)

®)

V)

Transaction Hash:

Status:

Block:

) Timestamp:

) From:

(@) Interacted With (To):

) Tokens Transferred:

Value:

2) Transaction Fee:

?) Gas Price:

(®)

3

)

[®)

) Ether Price:

) Gas Limit & Usage by Txn:

Gas Fees:

) Burnt & Txn Savings Fees:

Others:

) Input Data:

0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cha0f4e7f16bci73f49f83e4a5460 ([

@ Suc

15259101 114139 Block Confirmations

® 17 days 22 hrs ago (Aug-01-2022 09:32:31 PM +UTC) | (D Confirmed within 30 secs

O bitlig.eth @

Contract 0x5d94309e5a0090b165fa4181519701637b6daeba @ [0

» From Nomad: ERC20 Br... To 0xa8c83b1b30291... For 100 ($2,141,600.00) (& Wrapped BTC (WBTC)

0 Ether ($0.00)

0.00328419375549596 Ether ($5.59)

0.00000001928543434 Ether (19.28543434 Gwei)

$1,630.62 / ETH

266,191 | 170,294 (63.97%)

Base: 17.78543434 Gwei Max: 21.856414022 Gwei Max Priority: 1.5 Gwei

& Burnt: 0.00302875275549596 Ether ($5.15) ¥ Txn Savings: 0.000437822413966508 Ether ($0.74)

Txn Type: 2 (EIP-1559) Nonce: 4035 Position: 124

Name Type Data

(VR TELET-CRB A X-T-M0x6265616d000000000000000000000000d3dfd3ede74e0dcebclaa685e151332857e£ce2d000013d60065746800000000000000000000000088a69b4

DSwitch Back

Demo time

For developers

Smart Contract Security Verification Standard

Use safe audited libraries (OpenZepplin)

Get audits, even better if you have a product security team
Minor updates to a smart contracts can wreak havoc

Write tests , invariant testing is especially useful

Fuzz your contracts (use foundry , echidna)

Have a meaningful bug bounty program

Have a monitoring program, they might help

Test your projects end to end including deployment/ initialisation

For whitehats

Bridges are an attractive target because they custody lots of assets

e Most protocols including bridges have great bug bounty programs
They are important in growing the crypto ecosystem, why not hack on
systems where you can clearly demonstrate impact and get paid for it (
generously , something upto 10% of the value secured) while securing the
future of money for the masses ?

e Tools that may help you in the process

o Foundry
o Tenderly debugger
o Echidna/ Certora

Learning resources: immunify write ups , BlockThreat Newsletter
CTF : capture the ether, crypto zombies , ethernaught , paradigm ctf

(@)

@)

Questions?

Tweet @ pwnfooo
Telegram @ blocksek

References

https://docs.nomad.xyz/the-nomad-protocol/cross-chain-messaging/lifecycle-of-a-message
https://rekt.news/
https://blog.coinbase.com/nomad-bridge-incident-analysis-899b425b0f34?7qi=3d3d942484d8
https://blog.coinbase.com/what-are-bridges-bridge-basics-facts-and-stats-8dd9449066a0
https://medium.com/zengo/without-permit-multichains-exploit-explained-8417e8c1639b
https://media.dedaub.com/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49
https://docs.multichain.org/getting-started/how-it-works/cross-chain-router
https://qithub.com/SunWeb3Sec/
https://qgist.github.com/yoavw/160d5dadb37fbd0d1ec04e69951edafd
https://qist.github.com/yajin/0f1a7acfd54adce02422298a1dea8d89
https://docs.openzeppelin.com/contracts/4.x/api/token/ERC20
https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/
https://www.fireblocks.com/blog/vulnerabilities-discovered-and-patched-in-legacy-mpc-algorith
m-fireblocks-urges-move-to-mpc-cmp/

Thank you
Nullcon for
organising a
fantastic event

