
Tale of training a 
Web Terminator! 

Bharadwaj Machiraju 
@tunnelshade_



Aka ML - What works in offensive appsec and what doesn’t!



ME?

Appsec Engineer at Yodlee Infotech.

Project Leader for owasp owtf.

Loves machine learning.

Are you still reading this?

It seems so! @tunnelshade_

I am Bharadwaj Machiraju



Please keep in mind!

◈ All the work was done in my free time over a course of time!
◈ If you think a problem can be approached in a better manner, 

let us share the knowledge over coffee beer.
◈ Have some more ideas, please write it down so we can 

discuss.
◈ There are multiple ways of approaching a problem.
◈ I also share my failures so that you know what not to do.

*All Images to original owners



Our way to cool stuff!!

Objectives

ML 101

Problem of text 
representation

Input Detection ConclusionReinforcement 
Learning 101

Feedback Usage!

Failures and
Success

Perform 
Sequences

Vulnerability 
detection



Objectives
Convince you that ML is not rocket science.

ML in appsec is interesting.
What real ML looks like!

Maybe convince you to work in this direction!

1



Once upon a time, imagine you were 
hunting bugs in this cool new site 

called github!
 



Imagine you are visiting github for ￼the first time!





Now, you are open source rockstar! (i.e second visit onwards)



￼Browsing the functionality you end up on this page!￼



You check different features like issues, pull requests etc….

￼￼



And you click on a link and arrive here!

Will you repeat all the tests that you did for the previous repository? NO!



Apart from testing for vulnerabilities, this story outlines the approach 
of any application pentester!



Let me help you visualize the beauty of what you did in the story.

Recognize Sequences
From your previous experiences 
you recognize that you need to 
login but signup before that to 
access more functionality.

Identify Inputs
You understood that an email input 
field expects an email address 
while a credit card number expects 
a well, credit card number.

Understand Feedback
Feedback of application in this case 
incorrect format of password was 
understood by you and 
correspondingly the input was 
changed. 

Recall Input Values
For logging in you recollected that 
these values are same as the ones 
provided during the sign-up hence 
used them.

Categorize Pages
While browsing the pages found 
were partially remembered for 
their functionality to be recalled 
later.

Avoid Redundancy
If a page similar to a previously 
browsed one turned up, it was 
ignored to prevent redundancy and 
save time. 



Identify Inputs
Ability to correctly 
identify the inputs 
along with the format 
that is expected plays a 
vital role in 
understanding or 
navigating an 
application

Understand Feedback
Understanding the 
feedback given by the 
application makes the 
system self improving 
hence enhancing it’s 
performance 
overtime.

Perform Sequences
Being able to learn and 
perform simple 
sequence of steps like 
registering and logging 
in or adding a new 
address and editing it 
allows for better 
targeted navigation.



ML 101

Introduction to Machine Learning

2



◈ Sample aim of machine learning
◈ Technically, ml boils down to curve fitting, the black box magic 

can be defined as output = a_function(input).

Black Box Magic



Let us think it through

◈ You are a fitbit like manufacturer, trying to find step count 
using your gadget, the data that you have is pulse rate.

◈ Now, you need to tell if user took 1,2 or 3 steps depending on 
his pulse rate.

◈ You need a function that is like steps = f(pulse_data)



Sample Pulse Data
◈ What do you think is the most important aspect of pulse to 

determine the step count? Guess for the following samples.



How did you guess?

◈ Pulse height and time between pulses.
◈ Simplified function

steps = f(average_pulse_height, average_time_between_pulses)

◈ What we did above is called feature engineering.
◈ If you plot the pulse data samples and known step counts on a 

2-d plot









Technical Recap!

◈ We extracted useful features from input data.
◈ Collected lots of samples.
◈ Train the samples.
◈ What we just did is called Supervised Learning.
◈ Obviously because we had to label the training data ourselves.



Variants of Machine Learning

◈ Supervised Learning ← We just saw this!
◈ Unsupervised Learning

◈ Semi-Supervised learning is a class of supervised where 
small amount of labelled data is used along with large amount 
of unlabelled data.



Unsupervised Learning

◈ Consider same problem statement.
◈ Instead of hand labelling all the training data, you just tell how 

many clusters need to be formed in the data. 
◈ Depending on the algorithm and hyperparameters you get 

your function.
◈ Downside of this is the difficulty in visualizing the clusters 

especially in high dimensional data.





Problems of Text 
Representation
Time to get to the core issue.

3



Is text our only option?



Pretty much, YES!!

◈ Our understanding of any web application is heavily 
dependent on the textual content.

◈ Does that mean we should used it as our features? Not 
necessarily.

◈ But it is consistent across applications and general feedback 
from apps is textual again!



Why is Text processing hard?

◈ One major difficulty is that we don't consciously understand 
language ourselves. The second major difficulty is ambiguity.

◈ Representation of text in numbers is another story. Imagine 
the following line
⬥ What do you understand by “Pressing a suit”?
⬥ Now think like a Lawyer and then like a dry cleaner.



Identifying Inputs 
Failures & Successes!

Phew!!!

4



Identify Inputs
Ability to correctly 
identify the inputs 
along with the format 
that is expected plays a 
vital role in 
understanding or 
navigating an 
application

Understand Feedback
Understanding the 
feedback given by the 
application makes the 
system self improving 
hence enhancing it’s 
performance 
overtime.

Perform Sequences
Being able to learn and 
perform simple 
sequence of steps like 
registering and logging 
in or adding a new 
address and editing it 
allows for better 
targeted navigation.



Lingo

Placeholder

Labels
◈ E-Mail
◈ Mobile
◈ Dates
◈ Name
◈ ….



Attempt 1 - Hand-labelling Input placeholders

◈ Use simple NaiveBayes classifier with hand labelled training 
data gives good accuracy.



Attempt 1 - Training Data



Attempt 1 - Hand-labelling Input placeholders

◈ Pros
⬥ Simple solution

◈ Cons
⬥ Hand labelling takes manual effort. This is a big NO NO 

for me.
⬥ Unknown placeholders or a different language support is 

a whole new story.



After few days of trying to gather and label placeholders.
I thought the whole point was to simplify human efforts :(



Data Gathering

◈ You know how Tesla’s AutoPilot learns? From humans!
◈ :D

⬥ Build a browser extension and share it with people.
⬥ Collect input data formats they are filling.
⬥ Use it as training data!! Yuhoo!



Data Gathering

◈ Instead of a full extension, wrote a userscript for 
TamperMonkey addon and let users install that script.





Attempt 1 - Fails!

◈ Even though I have lots of data, I cannot label them 
manually or automatically.

◈ Manually is too much effort.
◈ Automatically not possible because input formats cannot be 

categorized without complex rules, so drop classification.
◈ Clustering is a daunting task as the data is high dimensional.



Attempt 2 - Placeholder vectorization

◈ Idea was to convert placeholders into a multi-dimensional 
vector space so that similar placeholders are nearby. Used 
Term Frequency-Inverse Document Frequency.

◈ Imagine a 3d space, our vectorization should be such that 

f(“Enter your email address”) ≅ f(“E-mail address..”)

◈ So, if you get a new placeholder, you can check the spatial 
cosine distance between the placeholder with all known data 
to get most similar matches. Let us visualize



Attempt 2 - 3D Visualization :P



Attempt 2 - 2D Visualization



Attempt 2 - Placeholder vectorization (DEMO!)

◈ So now, whenever a new 
placeholder is encountered 
similarity is checked with 
other placeholders to 
determine the input and if 
input is successful, the new 
placeholder is added into 
training data….



Understanding 
Application Feedback

Vroooooom!!!

5



Identify Inputs
Ability to correctly 
identify the inputs 
along with the format 
that is expected plays a 
vital role in 
understanding or 
navigating an 
application

Understand Feedback
Understanding the 
feedback given by the 
application makes the 
system self improving 
hence enhancing it’s 
performance 
overtime.

Perform Sequences
Being able to learn and 
perform simple 
sequence of steps like 
registering and logging 
in or adding a new 
address and editing it 
allows for better 
targeted navigation.



By Murphy’s Law, you will encounter 

◈ Unknown placeholders or previously unknown input formats.
◈ Way to deal with them is to understand the feedback given by 

the application



Attempt 1 - Use PoS tagging!

◈ PoS = Parts of Speech
◈ One way to understand feedback like these is to breakdown 

the sentence into phrases and extract information.
◈ Pros

⬥ It works!! ← Yes, it is a pro
◈ Cons

⬥ Complex logic to get it right.
⬥ Different languages might need different logic.
⬥ Illformed english is a NO NO.



Attempt 1 - PoS tagging!

Must/MD/B-VP/O have/VB/I-VP/O at/IN/B-PP/O 
least/JJS/B-ADJP/O 6/CD/B-NP/O characters/NNS/I-NP/O (/(/O/O 
with/IN/B-PP/B-PNP letters/NNS/B-NP/I-PNP and/CC/I-NP/I-PNP 

numbers/NNS/I-NP/I-PNP )/)/O/O and/CC/O/O no/DT/B-NP/O 
special/JJ/I-NP/O characters/NNS/I-NP/O ././O/O

Code: https://goo.gl/cXEeiC (DEMO?)
Video: https://www.youtube.com/watch?v=UBcTwMShzsQ

https://goo.gl/cXEeiC
https://www.youtube.com/watch?v=UBcTwMShzsQ


Attempt 1 -Input Help Relation!

◈ How to relate a help text to a particular input field?
⬥ Noun reference - When the help text directly refers to 

the input placeholder like “Your password should be …”
⬥ Visual Correlation - When the help texts are placed in 

such a way that they are visually related to the input.



Attempt 2 - LSTM (In Progress)!

◈ LSTM = Long Short Term Memory network (a class of 
Recurrent Neural Networks)

◈ Using seq2seq to translate these help texts into suggestions 
like previously seen.

◈ Seq2seq is a popular model which are extremely successful 
in translation tasks.



Attempt 2 - LSTM (In Progress)!

◈ Cons
⬥ Lots of training data is necessary
⬥ Manually identification of these help texts will be initially 

required.



Reinforcement 
Learning 101

AI is here!

6



RL
◈ Reinforcement learning is the most intuitive of all as it is 

inspired from behaviorist psychology.



State = outdoors, action = play, positive reward



State = kitchen, action = play, reward = well!
State = kitchen, action = play, reward = flying chappal!



RL

◈ We humans tend to repeat actions in states which lead to 
cumulative positive reward while avoiding actions that lead 
to a cumulative negative reward.

◈ So, generally an agent can be rewarded based on the states it 
arrives in which in long term make the agent biased towards 
the actions that lead to these states.

◈ Any problem that can be expressed as a Markov Decision 
Process can be an application for RL.



Maze Solver

◈ Actions: Left, Right, Up, Down
◈ State: [left_box_type, right_box_type, up_box_type, down_box_type]
◈ Reward: +10 for “+1” box, -1 for every step and -10 for “-1” box



Can your previous agent
 solve this maze?

◈ Actions: Left, Right, Up, Down
◈ State: ???
◈ Reward: +10 for “+1” box, -1 for every step and -10 for “-1” box

[left_box_type, right_box_type, up_box_type, 
down_box_type, direction_of_nearest_+1]



Value Function

◈ A function which states how good it is to perform certain 
action in certain state Q(state_vector, action_num).

◈ Higher the Q value more profitable the action will be.
◈ Value functions are generally stored in different ways of 

function approximators like RBF, Neural Networks etc...
◈ So, when you say experience is stored, it means that this 

value function was updated according to latest 
occurances.



Perform Sequences

We just saw how important state representation is.

7



Identify Inputs
Ability to correctly 
identify the inputs 
along with the format 
that is expected plays a 
vital role in 
understanding or 
navigating an 
application

Understand Feedback
Understanding the 
feedback given by the 
application makes the 
system self improving 
hence enhancing it’s 
performance 
overtime.

Perform Sequences
Being able to learn and 
perform simple 
sequence of steps like 
registering and logging 
in or adding a new 
address and editing it 
allows for better 
targeted navigation.



In a regular web scenario, learning sequences 

◈ Learning the sequence of link clicks and form fills! So, these 
two types generally constitute our actions.

◈ Reward based on the end result requirements.
◈ What is state made up of then?



Let us roll back to what we did the beginning? Why you chose Sign Up?



Why SignUp?

◈ You have an idea that clicking on a text “SignUp” generally 
leads to a form where you can register.

◈ You didn’t click on other links on the page like Open Source 
etc.. because the reward that you were pursuing is to login.



Attempt 1 - State Representation



Attempt 1 - State Representation

◈ For a machine, state need to be numbers. So again we have to 
represent the text in a numerical form so that similar 
states are closer in their vector form.

◈ What might be a good way?



Attempt 1 - State Representation

◈ Why not just add all the link texts, form placeholders and 
label input data as a string and vectorize it?

◈ Doc2Vec/Paragraph2Vec was used for this.
◈ The idea still remains same, you have a bunch of state strings 

which when mapped have the similarities between them.
◈ For example



Assuming this is first visit, the state at this point of time is made from all 
the links (“Featured”, “News”, “Entertainment”, “Sports” …..) + 

Forms (There aren’t any) + Label Values (No label values)

= [0.23423…, 0.3242…, 0.23423...]



When we have an account in twitter i.e have label values for username 
and password, the state for the same page is different, which is all the 
links (“Featured”, “News”, “Entertainment”, “Sports” ….)  + Forms 

(There aren’t any) + Label Values (username, password, email)

= [0.25192…, 0.40123…, 0.29188...]



Attempt 1 - Actions & Reward

◈ Possible actions in each state were
⬥ Clicking a link (which was part of state info)
⬥ Filling a form (which was part of state info)

◈  Reward
⬥ Each step: -1
⬥ Successfully Logged In: +20

◈ LSPI SARSA agent was used with RBF for storing the value 
function.

◈ Let us quickly look at it step by step



doc2vec

n LINKS
+

m FORMS
+

LABEL DATA 
State 

Representation
Vector Value 

Function
(RBFs)

Most
Profitable / 
Random
Action Perform

Action

Reward

Update Value Function

New State and
same cycle repeats



Attempt 1 - Did it work?

◈ Oh boy it did, but only for simple applications.
◈ Huge applications like E-Commerce sites have lots of links of 

which most of them lead to a product page.
◈ The state representation being continuous poses 

convergence challenges to the policy. I.e even though the 
state vector is only 3 dimensional, those three dimensions can 
take any value between -1 to +1 which makes the state space 
extremely complex for quickly learning a policy.



doc2vec
Value 

Function
(RBFs)

Most
Profitable / 
Random
Action Perform

Action

Reward

Update Value Function

n LINKS
+

m FORMS
+

LABEL DATA 
State 

Representation
Vector

Problems



Attempt 1 - Arrghhhh!



Attempt 2 - State Representation

◈ Let us try to solve the problems in the previous model
⬥ Limited set of links & forms for consideration.
⬥ Huge state space.

◈ One good way is to use an unsupervised feature selector 
and then converting those selected features into a state 
vector.



Attempt 2 - State Representation

◈ The feature selector will allow us to consider huge number of 
links and forms at the same time giving a discrete state 
space.

◈ The added complexity is to train the feature selector along 
with the value function.



Attempt 2 - Updated Training Algo

◈ Randomly pick a subset of features and try episodic 
learning with the RL agent.

◈ If an episode ends with a positive reward, try to store the 
elements (i.e links and forms) if they are not already present.

◈ For the next episode, label the required number of forms or 
links as per the stored elements.

◈ These labels constitute the state vector.
◈ Damn!! This is difficult to explain, let us look at an example



Feature
Selector

All LINKS & 
FORMS

State Vector
Discrete Space

N Links + M Forms Value 
Function
(RBFs)

Most
Profitable / 
Random
Action Perform

Action

Reward

Update Value Function

New State and
same cycle repeats



Feature
Selector

All LINKS & 
FORMS

State Vector
[1.0, 2.0, 1.0, 0.0]

Login Module

Trained to pick 
only login & signup 

links and forms.
2 links and 2 forms 

are labelled

[1, 2, 4, 0] = [link1, link2, form1, form2]

Link Labels 

1. SignUp type link
2. Login type link

Form Labels (0 indicates no match)

1. Login Type Form
2. Signup Type Form



Attempt 3 - Semi-Supervised Approach

◈ Instead of randomly picking a subset of features, manually 
perform new sequences for once. 

◈ This greatly reduces the training time as you assist the 
feature selector in picking the right features.

◈ So feature selector is trained in a semi-supervised 
approach.

◈ Using only one module per sequence makes it more efficient 
and simple state and action space.



Vulnerability Detection

Reflected XSS PoC.

8



Idea

◈ Consider the markup <div class="INJECTION_POINT">.
◈ In order to execute js you come out of the class attribute 

context and put a payload.
◈ A simple vector in the above scenario is "><img src=x 

onerror=alert()>.
◈ This is very trivial because of your exposure to HTML markup.
◈ If we can somehow impart the knowledge of html to an RL 

agent, it should be able to provide some simple XSS 
payloads.



State Representation

◈ The only useful factors are the tag and the attribute context 
you are in
⬥ 1_tag: div
⬥ 1_tag_ap: class
⬥ context: attr_value
⬥ context: class



Enhancements

◈ To speedup the training time, instead of giving just alphabets I 
gave all the html tags, attributes as actions.

◈ Based on the html parsing, html tags are made available only 
when the context is a tag name etc..

◈ Similarly based on the html parsing attributes and their values 
are made available only when the context needs one of those.



Results - For <button INJECTION_POINT>



https://www.youtube.com/watch?v=7YUDa4nxX2I

https://www.youtube.com/watch?v=7YUDa4nxX2I
https://www.youtube.com/watch?v=7YUDa4nxX2I


Conclusion

Giving back is necessary!

9



What we looked at?

◈ Basics of machine learning and its types.
◈ Ways to make machine identify inputs, understand 

application feedback.
◈ Reinforcement learning and its use cases.
◈ Ways to perform sequences using rl.
◈ Vulnerability detection with the help of reinforcement 

learning.



Where to look for more?

Two nice approaches that I am aware of

◈ https://www.cloudsek.com/announcements/blog/cloud-ai-an-a
rtificial-intelligence-on-the-cloud/

◈ https://www.slideshare.net/babaroa/code-blue-2016-method-
of-detecting-vulnerability-in-web-apps

https://www.cloudsek.com/announcements/blog/cloud-ai-an-artificial-intelligence-on-the-cloud/
https://www.cloudsek.com/announcements/blog/cloud-ai-an-artificial-intelligence-on-the-cloud/
https://www.cloudsek.com/announcements/blog/cloud-ai-an-artificial-intelligence-on-the-cloud/
https://www.slideshare.net/babaroa/code-blue-2016-method-of-detecting-vulnerability-in-web-apps
https://www.slideshare.net/babaroa/code-blue-2016-method-of-detecting-vulnerability-in-web-apps
https://www.slideshare.net/babaroa/code-blue-2016-method-of-detecting-vulnerability-in-web-apps


How to get started?

◈ https://bigml.com/ml101/
◈ https://kofzor.github.io/Reinforcement_Learning_101/
◈ http://karpathy.github.io/2015/05/21/rnn-effectiveness/
◈ https://github.com/cazala/synaptic/wiki/Neural-Networks-101
◈ https://www.coursera.org/learn/machine-learning
◈ http://scikit-learn.org/stable/tutorial/machine_learning_map/i

ndex.html
◈ https://docs.google.com/document/d/1custsRlKzNHRiY7P9S9k

hYqHc0PQSXEDTAXoJlbSl4U/edit?usp=sharing

https://bigml.com/ml101/
https://bigml.com/ml101/
https://kofzor.github.io/Reinforcement_Learning_101/
https://kofzor.github.io/Reinforcement_Learning_101/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/cazala/synaptic/wiki/Neural-Networks-101
https://github.com/cazala/synaptic/wiki/Neural-Networks-101
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://docs.google.com/document/d/1custsRlKzNHRiY7P9S9khYqHc0PQSXEDTAXoJlbSl4U/edit?usp=sharing
https://docs.google.com/document/d/1custsRlKzNHRiY7P9S9khYqHc0PQSXEDTAXoJlbSl4U/edit?usp=sharing
https://docs.google.com/document/d/1custsRlKzNHRiY7P9S9khYqHc0PQSXEDTAXoJlbSl4U/edit?usp=sharing


Credits

◈ Special thanks to all the people who trusted 
me and used the addon.

◈ Kamaiah Nadavala
◈ Ajin Abraham
◈ Francis Alexander
◈ Yodlee Appsec Team!
◈ Others who are pursuing similar goals.



Thanks! And Questions?

Email: bharadwaj.machiraju@gmail.com

Twitter: @tunnelshade_

Blog: blog.tunneshade.in

Github: github.com/tunnelshade


