
Nullcon Goa 2020

Putting it all together:  

Building an iOS Jailbreak 
From Scratch



@umanghere



Nullcon Goa 2020

whoami

• 20


• Offensive security researcher.


• Primarily work on kernel and browser exploitation, 
occasionally release some of my research.


• Part of the Electra jailbreak team.


• Play CTFs with OpenToAll.



Nullcon Goa 2020

What’s this talk about?

• A journey to run unsigned code on Apple’s iOS devices, 
with the maximum privileges possible.


• A look at the mitigations that stand between us and our 
goal.


• Thoughts on breaking these mitigations, and understanding 
how they can be improved.



Nullcon Goa 2020

Where do we begin?

• We could target the iOS bootchain, and compromise the boot 
process of the device.


• Or, we could target the iOS kernel to escalate our privileges 
after the device has booted.



Nullcon Goa 2020

The iOS Bootchain



Nullcon Goa 2020

BootROM (SecureROM) LLB iBoot Kernel Userspace



Nullcon Goa 2020

Immutable

BootROM (SecureROM) LLB iBoot Kernel Userspace



Nullcon Goa 2020

Immutable

Each stage verifies the next before switching to it

BootROM (SecureROM) LLB iBoot Kernel Userspace



Nullcon Goa 2020

Immutable

Attacking any stage allows you to control the next

BootROM (SecureROM) LLB iBoot Kernel Userspace



Nullcon Goa 2020

Why

target the bootchain?

• Processors start by executing code at the highest privilege 
level possible.


• Most exploit mitigations do not apply, or have not yet been 
initialised.


• If a vulnerability lies within the SecureROM, it cannot possibly 
be patched.



Nullcon Goa 2020

Why not

target the bootchain?

• Just a fraction of the complexity of the kernel and the 
userspace.


• Harder to find vulnerabilities due to reduced attack surface.


• Insufficient effort-to-reward ratio.



Nullcon Goa 2020

The iOS Kernel



Open Source Closed Source

Mach

BSD

IOKit

Proprietary Kernel Extensions 



Nullcon Goa 2020

The iOS Kernel

• Hybrid kernel, incorporates the Mach microkernel and BSD 
APIs.


• Some parts are released as open-source software.


• Device drivers are written with the IOKit framework, most of 
them are closed source.



Nullcon Goa 2020

Why target the

iOS Kernel?

• Significantly more complex than the bootchain, vast attack 
surface.


• Closed-source kernel extensions are not audited enough.


• Successful compromise should allow code execution in EL1.


• Implicitly allows control over userspace processes.



Nullcon Goa 2020

Why not target the

iOS Kernel?

• Open-source portions are heavily audited.


• Some of the attack surface is inaccessible from inside the 
sandbox.


• Interesting hardware, such as the crypto engine, are 
inaccessible.


• Significant vulnerability churn.



Nullcon Goa 2020

Attacking the 
iOS Kernel



Nullcon Goa 2020

What’s in a kernel exploit?

• We generalise a kernel exploit to have two primitives.


• readKernelMemory(vm_addr_t, size_t)


• writeKernelMemory(vm_addr_t, void *, size_t)



Nullcon Goa 2020

What’s in a kernel exploit?

• We generalise a kernel exploit to have two primitives.


• readKernelMemory(vm_addr_t)


• writeKernelMemory(vm_addr_t, void *, size_t)

Read from the 
kernel’s address space

Write to the 
kernel’s address space



Nullcon Goa 2020

What’s in a kernel exploit?

• Most kernel exploits prefer to craft a send right to a fake 
Mach port corresponding to the kernel task.


• Reading and writing memory is just a matter of calling 
mach_vm_{read|write} on the send right.


• This isn’t as straightforward as it sounds — being able to 
read kernel memory is often a prerequisite to craft this 
port.



Nullcon Goa 2020

oob_timestamp

• Kernel exploit targeting iOS 13.3 and below.


• Released by Brandon Azad for Google Project Zero.


• Out of bounds write of partially-controlled data in 
AGXCommandQueue::processSegmentKernelCommand()



Nullcon Goa 2020

oob_timestamp

• Kernel exploit targeting iOS 13.3 and below.


• Released by Brandon Azad for Google Project Zero.


• Out of bounds write of partially-controlled data in 
AGXCommandQueue::processSegmentKernelCommand()

Closed Source Kernel Extension



Nullcon Goa 2020

oob_timestamp

• Sends a Mach message containing out-of-line ports. 


• Uses a somewhat controlled out of bounds write to free 
some of these ports.


• Reallocates those ports by spraying data, leading to a 
Mach port with controlled contents waiting to be recieved.


• Receives the crafted Mach port.



Nullcon Goa 2020

early_readKernelMemory

• Given just control over a Mach port, how do we read kernel 
memory?


• Enter, pid_for_task.


• In normal circumstances, returns the 32-bit process 
identifier of a task (to whose port you have a send right).







Get the task corresponding to the port



Get the task corresponding to the port

Get the proc_t structure 
corresponding to the task



Get the task corresponding to the port

Get the proc_t structure 
corresponding to the task

Get the PID from the process structure



Get the task corresponding to the port

Get the proc_t structure 
corresponding to the task

Get the PID from the process structure

Copy the PID out to userspace



Nullcon Goa 2020

early_readKernelMemory

• In effect, pid_for_task can be abused as a 4 byte read 
from a controlled address, given a controlled port.


• We combine two adjacent 4 byte reads into an 8 byte read.



Nullcon Goa 2020

early_readKernelMemory

• This would be enough to craft a task port that would 
behave like the actual kernel’s task port, as we can now 
read kernel_map and ipc_space_kernel.


• Except we do not know where these values are located in 
kernel memory, due to Kernel Address Space Layout 
Randomisation.



Nullcon Goa 2020

KASLR

• Slides the kernel’s virtual memory mapping by a random 
amount.


• The slide is generated by iBoot by hashing entropy, and 
changes every time the device reboots.


• In effect, we must know at least one pointer inside the 
kernel’s image, direct or otherwise, to defeat KASLR.



Nullcon Goa 2020

KASLR

• Fortunately for us, oob_timestamp gives us a pointer to our 
IPC space.


• We can use this to leak the address of a Mach port 
corresponding to an IOSurface.


• This port has a pointer to the C++ object in ip_kobject.


• By reading the vtable pointer from this C++ object, we 
obtain a pointer within the kernel image.



Nullcon Goa 2020

{read,write}kernelMemory

• Using pid_for_task to read kernel memory is very 
inefficient.


• More importantly, we cannot write kernel memory with this 
technique.


• What do we do?



Nullcon Goa 2020

{read,write}kernelMemory

• Given that we now know the value of the kernel_map, 
kernel_task and ipc_space_kernel, we can now craft a fake 
task port that behaves exactly like the kernel task port.


• Having a send right to this task port grants us the ability to 
read and write memory in the kernel’s address space by 
using mach_vm_{read|write}.



Nullcon Goa 2020

To Root and Beyond

• It is almost natural to escalate our privileges to the root 
user, so we locate our proc_t structure in memory and 
perform a few writes.


• writeKernelMemory(proc->p_ucred.cr_posix.cr_uid, 0, 4);


• So we should now be able to do anything, right?



Nullcon Goa 2020

No!



Nullcon Goa 2020

To Root and Beyond

• Our application is running in the container sandbox profile, 
so we cannot perform several interesting operations.


• More importantly, we can’t even successfully call some 
syscalls like execve or fork.


• What now? 



Nullcon Goa 2020

To Root and Beyond

bsd/kern/kern_fork.c



Nullcon Goa 2020

To Root and Beyond

security/mac_process.c



Nullcon Goa 2020

To Root and Beyond

bsd/sys/ucred.h



Nullcon Goa 2020

To Root and Beyond

bsd/sys/ucred.h



Nullcon Goa 2020

To Root and Beyond

• The Mandatory Access Control framework is the 
foundation of the iOS sandbox.


• MAC uses p_ucred.cr_label to determine which 
policies to enforce.


• We could change it to a null pointer.


• Or we could change the process’s p_ucred to the kernel’s 
p_ucred, which bypasses almost all sandbox checks.



Nullcon Goa 2020

To Root and Beyond

kptr_t kern_ucred = readKernelMemory64(kernel_proc + OFF(proc, 
p_ucred));  
 
writeKernelMemory32(kern_ucred + OFF(ucred, cr_ref), 0xcdef);

writeKernelMemory64(my_proc + OFF(proc, p_ucred), kern_ucred);



Nullcon Goa 2020

To Root and Beyond

• As soon as we try to do something useful, the kernel panics.


panic(cpu 0 caller 0xfffffff00a18b574): “shenanigans!"



Nullcon Goa 2020

Shenanigans!



Nullcon Goa 2020

To Root and Beyond



Nullcon Goa 2020

To Root and Beyond
Check if the caller is using the 

kernel’s ucred.
Check if the caller is using 

the kernel’s ucred.
Panic if the caller isn’t the 

kernel process.

sb_evaluate



Nullcon Goa 2020

To Root and Beyond

• Good idea, terrible implementation.


• Caches the value of the kernel’s ucred.


• We can overwrite the cached value with garbage and 
always skip the check. 



Nullcon Goa 2020

Remounting /

• The APFS filesystem at / is mounted read-only at boot, 
whereas /private/var is mounted as read-write.


• We’d like to write in /, so let’s remount it.



Nullcon Goa 2020

Remounting /

• But we can’t! The kernel explicitly disallows remounting the 
filesystem at /.


• This is done by checking the MNT_ROOTFS flag on the root 
vnode.


• Let’s patch away the check in _hook_mount_check_remount.



Nullcon Goa 2020

Nope!



Nullcon Goa 2020

A Lesson in KTRR

• On the A10 SoCs and later, the MMU prevents writes to 
protected memory pages.


• These include the kernel code (__TEXT), kext code and all 
__const regions.


• Patching the kernel’s code is nontrivial, we have to make 
do by data-only post-exploitation.



Nullcon Goa 2020

Remounting /

• To remount the filesystem, let’s temporarily remove the 
MNT_ROOTFS flag from the root vnode.


• That worked, so let’s try to write something in /.



Nullcon Goa 2020

Panic!



Nullcon Goa 2020

Remounting /

• Starting iOS 11.2.6, an APFS snapshot is mounted at /.


• Snapshots are not designed to be written to, the filesystem 
driver panics.


• @SparkZheng and @bxl1989 released a temporary bypass, 
followed by which, I released a persistent one.



Nullcon Goa 2020

Remounting /

• Their solution: mount the root block device somewhere else 
and swap the filesystem-specific data.


• Somewhat unstable, the device eventually panics.



Nullcon Goa 2020

Remounting /
• My solution stops the snapshot from being mounted at / in the 

first place.


• This is because the kernel checks for the presence of a 
snapshot corresponding to the boot manifest hash and 
mounts it early in the boot process.


• Strangely enough, if a matching snapshot is not found, the 
kernel mounts the actual volume instead.


• We can rename the snapshot to anything we’d like by using 
the fs_snapshot_rename syscall, and force the actual 
filesystem to be mounted.



Nullcon Goa 2020

Remounting /



Nullcon Goa 2020

Remounting /

• After iOS 12, fs_snapshot_rename fails when called on the 
root volume.


• A flag inside the snapshot’s vnode is checked, and the syscall 
fails if it is set.


• Sneaky, sneaky!


• Didn’t last very long, I demoed a bypass just a few days after 
the first kernel exploit for iOS 12 became available.



Nullcon Goa 2020

Remounting /

• This change was a step in the right direction — attackers now 
needed the ability to call functions in EL1 if they wanted to 
locate the snapshot vnode.


• On A12 SoCs and above, this would require the ability to 
forge signed pointers in order to defeat ARMv8.3 Pointer 
Authentication.


• Here’s what happens if you don’t use a signed pointer when 
calling kernel functions:



Nullcon Goa 2020

Panic!



Nullcon Goa 2020

Remounting /

“It's hard to call something a PAC defeat without 
knowing what PAC is supposed to defend against, and 
it's hard to say that something like PAC "raises the bar" 

without knowing whether anyone really has to cross 
that bar anyway.”

— Ian Beer



Nullcon Goa 2020

Remounting /

• “Attackers now needed the ability to call functions in EL1 if 
they wanted to locate the snapshot vnode.”


• Do they?


• Is there absolutely no place where a pointer to the snapshot 
vnode might be saved? 



Nullcon Goa 2020

Remounting /

• There is one — iterating through the namecache yields a 
pointer to “/.snaps/snapshot-name”.


• We can then set the flag and remount away.


• Since we only need to read and write kernel memory, 
bypassing pointer authentication is not required!



Nullcon Goa 2020

CoreTrust

• Introduced in iOS 12, with several rumours suggesting that 
it’d be a userspace version of KTRR.


• One of the most underwhelming security mitigations I have 
seen.


• Requires that every binary have a valid CMS blob in the 
code signature.



Nullcon Goa 2020

CoreTrust

• There are no checks if the certificate used to sign the CMS 
blob are still valid — the only requirement is that the 
certificate must have a chain of trust leading to Apple.


• While it can be bypassed entirely by a few well placed 
writes in the vnode cache, it’s far simpler to get an expired 
enterprise developer certificate and use it to sign binaries 
instead.



Nullcon Goa 2020

Takeaways



Nullcon Goa 2020

iOS and macOS pack a ton of 
pre-exploit and post-exploit 

mitigations.



Nullcon Goa 2020

Even after attacking the kernel, 
the amount of hoops an attacker 

has to jump through is 
fascinating.



Nullcon Goa 2020

The security architecture of iOS 
results in a semblance of 

normality even when the kernel 
has been successfully attacked.



Nullcon Goa 2020

Apple’s approach to security 
relies significantly on post-exploit 
mitigations, which are only set to 

increase in number.



Nullcon Goa 2020

The future for attackers is 
challenging — and, dare I say, 

exciting!



Nullcon Goa 2020

Thanks

We’re standing on the 
shoulders of giants.



Nullcon Goa 2020

Thanks

• The Electra team (@CStar_OW, @jaimiebishop123 et. al.)


• Nullcon organisers.


• You



Nullcon Goa 2020

Questions? @umanghere


